Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their physiological variability is key to the balancebetween the production and consumption of organic matter and ultimately particle export in the ocean. Here we investigate a potential link betweenbacterial traits and ecosystem functions in the rapidly warming West Antarctic Peninsula (WAP) region based on a bacteria-oriented ecosystemmodel. Using a data assimilation scheme, we utilize the observations of bacterial groups with different physiological traits to constrain thegroup-specific bacterial ecosystem functions in the model. We then examine the association of the modeled bacterial and other key ecosystemfunctions with eight recurrent modes representative of different bacterial taxonomic traits. Both taxonomic and physiological traits reflect thevariability in bacterial carbon demand, net primary production, and particle sinking flux. Numerical experiments under perturbed climate conditionsdemonstrate a potential shift from low nucleic acid bacteria to high nucleic acid bacteria-dominated communities in the coastal WAP. Our studysuggests that bacterial diversity via different taxonomic and physiological traits can guide the modeling of the polar marine ecosystem functionsunder climate change.more » « less
-
Abstract. The West Antarctic Peninsula (WAP) is a rapidly warming region, withsubstantial ecological and biogeochemical responses to the observed changeand variability for the past decades, revealed by multi-decadal observationsfrom the Palmer Antarctica Long-Term Ecological Research (LTER) program. Thewealth of these long-term observations provides an important resource forecosystem modeling, but there has been a lack of focus on the developmentof numerical models that simulate time-evolving plankton dynamics over theaustral growth season along the coastal WAP. Here, we introduce aone-dimensional variational data assimilation planktonic ecosystem model (i.e., theWAP-1D-VAR v1.0 model) equipped with a modelparameter optimization scheme. We first demonstrate the modified and newlyadded model schemes to the pre-existing food web and biogeochemicalcomponents of the other ecosystem models that WAP-1D-VAR model was adaptedfrom, including diagnostic sea-ice forcing and trophic interactions specificto the WAP region. We then present the results from model experiments wherewe assimilate 11 different data types from an example Palmer LTER growthseason (October 2002–March 2003) directly related to corresponding modelstate variables and flows between these variables. The iterative dataassimilation procedure reduces the misfits between observationsand model results by 58 %, compared to before optimization, via an optimized set of12 parameters out of a total of 72 free parameters. The optimized model resultscapture key WAP ecological features, such as blooms during seasonal sea-iceretreat, the lack of macronutrient limitation, and modeled variables andflows comparable to other studies in the WAP region, as well as severalimportant ecosystem metrics. One exception is that the model slightlyunderestimates particle export flux, for which we discuss potentialunderlying reasons. The data assimilation scheme of the WAP-1D-VAR modelenables the available observational data to constrain previously poorlyunderstood processes, including the partitioning of primary production bydifferent phytoplankton groups, the optimal chlorophyll-to-carbon ratio ofthe WAP phytoplankton community, and the partitioning of dissolved organiccarbon pools with different lability. The WAP-1D-VAR model can besuccessfully employed to link the snapshots collected by the available datasets together to explain and understand the observed dynamics along thecoastal WAP.more » « less
-
Abstract. Marine diazotrophs convert dinitrogen (N2) gas intobioavailable nitrogen (N), supporting life in the global ocean. In 2012, thefirst version of the global oceanic diazotroph database (version 1) waspublished. Here, we present an updated version of the database (version 2),significantly increasing the number of in situ diazotrophic measurements from13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cellabundance, and nifH gene copy abundance have increased by 184 %, 86 %, and809 %, respectively. Version 2 includes two new data sheets for the nifH genecopy abundance of non-cyanobacterial diazotrophs and cell-specific N2fixation rates. The measurements of N2 fixation rates approximatelyfollow a log-normal distribution in both version 1 and version 2. However,version 2 considerably extends both the left and right tails of thedistribution. Consequently, when estimating global oceanic N2 fixationrates using the geometric means of different ocean basins, version 1 andversion 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; rangesbased on one geometric standard error). In contrast, when using arithmeticmeans, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1(74±7 Tg N yr−1). Specifically, substantial rate increases areestimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics,and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in theIndian Ocean to be 35±14 Tg N yr−1, which could not be estimatedusing version 1 due to limited data availability. Furthermore, a comparisonof N2 fixation rates obtained through different measurement methods atthe same months, locations, and depths reveals that the conventional15N2 bubble method yields lower rates in 69 % cases compared tothe new 15N2 dissolution method. This updated version of thedatabase can facilitate future studies in marine ecology andbiogeochemistry. The database is stored at the Figshare repository(https://doi.org/10.6084/m9.figshare.21677687; Shao etal., 2022).more » « less
An official website of the United States government
